I (a) For any $k \ge 1$, since $A_k \in \mathcal{M}$, X_A is measurable. Therefore, $f := \sum_{k=1}^{\infty} X_{A_k}$ is measurable. Hence, $E = f^{-1}(\{2024\})$ is measurable.

(b) Since $\sum_{k=1}^{\infty} \lambda(A_k) < \infty$, $\sum_{k=n}^{\infty} \lambda(A_k) \rightarrow 0$ as $n \rightarrow \infty$. For any $n \in \mathbb{A}$, $F \subset \bigcup_{k \neq n} A_k$. Thus, $\lambda(F) \leq \lambda(\bigcup_{k \neq n} A_k) \leq \sum_{k=n}^{\infty} \lambda(A_k) \rightarrow 0$ as $n \rightarrow \infty$

2 (a) It suffices to show

 $(f+g)^{-1}(\alpha,\omega) = U f^{-1}(t,\omega) (1g^{-1}(s,\omega))$ $t+s>\alpha$ $t,s\in Q$

Consider a point x satisfying (f+g)(x) > a. We can always choose $t, s \in Q$ such that f(x) > t, g(x) > s. It follows that $x \in f^{-1}(t, \infty) \cap g^{-1}(s, \infty)$, and we have one side inclusion. The other side is immediately. Since $fg = 4 [(f+g)^2 - (f-g)^2]$, it cuffices to show f^2 is measurable if f is measurable. It follows the fact $h(x) = x^2$ is a continuous function.

(b) Let $F := \{E \in P_{IR} : f(E) \in B\}$.

We first show F is a σ -algebra.

Since f is continuous and injective, f is monotone.

· IREF since f(IR) is an interval

· If $E \in \mathcal{F}$, then $f(E) \in \mathcal{B}$. $f(IR \setminus E) = f(IR) \setminus f(E) \in \mathcal{B}$. Thus $IR \setminus E \in \mathcal{F}$.

If $E_k \in F$, then $f(E_k) \in B$. $f(\mathcal{D}_{E_k}) = \mathcal{D}_{F_k}(E_k) \in B$.

Since f maps compact sets to compact sets, F contains all compact sets.

Hence, $B \subset \mathcal{F}$, i.e., $f(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

3. Assume on the contrary there is $\varepsilon > 0$ and E_n with $\mu(E_n) \le 2^{-n}$ and that $\int_{E_n} |f| d\mu \ge \varepsilon$.

Let $A_n = \bigcup_{j \ge n} E_j$ and $A = \bigcap_{n=1}^{\infty} A_n$ By Borel-Cantelli Lemma, since $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, $\mu(A) = 0$

On the other hand, since IfI XAn < IFI, by Dominated Convergence Theorem,

SAIFIDM = lim SAIFIDM = Eo

Contradiction!

4(a) Suppose nut.

Then for any $n \in \mathbb{A}$, \exists measurable $A_n \in \mathbb{B}$ such that $L(B \setminus A_n) \leq \frac{1}{n}$. Let $A = \bigcup_{n=1}^{\infty} A_n$. Then A is measurable. And $L(B \setminus A) \leq L(B \setminus A_n) \leq \frac{1}{n}$, \forall $n \in \mathbb{A}$. Thus $L(B \setminus A) = 0$. Therefore, $B \setminus A$ is measurable. Hence, $B = (B \setminus A) \cup A$ is measurable. Contradiction! (b) Notice that any Lebesgue measurable set $E = (\tilde{U} K_n) UN \text{ with } K_n \text{ compact and } L(N) = 0$ and continuous function maps compact sets to compact sets.

It suffices to show f preserves null set.

Let Nn=Nn[-n, n]

Then $N = \bigcup_{n=1}^{\infty} N_n$.

Since f is continuously differentiable, f is Lipschitz on [-n,n], i.e., $\exists M_n > 0$ such that $|f(x) - f(y)| < M_n |x - y|$ for all $x, y \in [-n, n]$. Thus $L(f(N_n)) = 0$.

Hence, $L(f(N)) = L(\bigcup_{N=1}^{\infty} f(N_n)) \leq \sum_{N=1}^{\infty} L(f(N_n)) = 0$

5. The statement is wrong.

Connter-example:

$$f_2 = \chi_{[1/2,1]}$$